Питание клетки

И.Л.Окштейн, рис. Н.С.Ермаченко - Цитология с основами естественных наук. Учебное пособие

Любая живая клетка питается, т.е. захватывает из внешней среды съедобные для себя вещества (в виде отдельных молекул или больших групп молекул - пищевых частиц, иногда даже целых клеток меньшего размера), и так или иначе использует эти вещества.

Как клетка использует захваченные из внешней среды питательные вещества

Есть всего два принципиально различных варианта.

  1. Молекулы питательных веществ можно использовать для построения других молекул, выполняющих в жизни клетки какие-нибудь более или менее важные функции, например, различных молекул, входящих в состав клеточной мембраны. Этот вариант использования клеткой питательных веществ называется ассимиляцией.
  2. Другой вариант - по сути дела сжечь их. Если поджечь, например, кусочек сахара или древесины, то он будет гореть, выделяя энергию в виде света и тепла. Клетка умеет производить похожий процесс (он называется дыханием) с отдельными молекулами пищи. Энергия, которая при этом выделяется, используется клеткой, например, для передвижения или для захвата новых пищевых частиц. Подробнее о дыхании мы поговорим в главе «Диссимиляция. Дыхание клетки». Такой вариант использования веществ называется диссимиляцией.

Фагоцитоз ("фагос" - "пожиратель", "цитос" - "клетка") - питание клетки сравнительно большими пищевыми частицами (в том числе другими клетками). Общая картина фагоцитоза показана на рис. 13. Проплывающая мимо клетки пищевая частица касается мембраны и прилипает к ней (1, 2). Мембрана под ней прогибается, охватывая частицу со всех сторон (3). В результате образуется мембранный пузырек с частицей внутри - пищеварительная вакуоль (4). Она отрывается от мембраны и уплывает вглубь цитоплазмы. Там она сливается с другим пузырьком (первичной лизосомой - от слов "лизис" - "растворение, расщепление" и "сома" - "тело"), отделившимся от комплекса Гольджи (5). Пузырек - результат этого слияния - называют вторичной лизосомой. После этого пищевая частица начинает растворяться. Минут через 20 внутри вторичной лизосомы виднеются только несколько маленьких бесформенных кусочков, почему-то "не захотевших" растворяться (6). Затем вторичная лизосома подплывает к мембране клетки и сливается с ней, выбрасывая из клетки наружу эти "кусочки" (7б). Другой вариант, гораздо более приемлемый для многоклеточных животных - вторичная лизосома выбрасывает непереваренные остатки в специальную вакуоль накопления на «вечное хранение» (7а).

Как Вы полагаете, чем опасен для организма многоклеточного животного выброс непереваренных остатков в пространство между клетками?

Молекулярные механизмы фагоцитоза

Все эти удивительные превращения происходят благодаря деятельности специальных молекул. На рис. 14а показаны молекулы мембраны клетки (они называются рецепторами), обеспечивающие прилипание пищевой частицы к мембране и образование пищеварительной вакуоли. Рецепторы - это молекулы мембраны клетки, которые могут узнавать другие молекулы (лиганды), и прочно к ним прилипать. Коснувшаяся мембраны частица прилипает в том случае, если на ее поверхности имеются лиганды к каким-нибудь рецепторам, имеющимся на поверхности клетки (на мембране обычно имеется около 100 различных разновидностей рецепторов, и каждый из них "узнает" определенный лиганд).

Рецепторы в мембране свободно перемещаются в результате теплового движения. Как связан этот факт с «облипанием» мембраной поверхности пищевой частицы?

Захват пищевой частицы (рис. 14: этапы 1-3)

Растворение частиц пищи во вторичной лизосоме (рис. 13: этапы 5-7)

Пусть в данном конкретном случае клетка захватила с помощью фагоцитоза другую клетку, только маленькую (см. рис.14б). Первичная лизосома принесла из комплекса Гольджи специальные молекулы (пищеварительные ферменты (3)), умеющие "разрезать" большие молекулы (1) (например, полимеры - см. ниже) на части. Из-за этого органоиды захваченной клетки "разваливаются" на отдельные мелкие молекулы (2). В мембране вторичной лизосомы имеются также белки-переносчики (4), которые умеют переносить эти мелкие молекулы через мембрану в цитоплазму клетки.

Как Вы полагаете, откуда взялись в мембране лизосомы белки - переносчики?

Среди пищеварительных ферментов есть протеазы, умеющие расщеплять белки на мономеры. Почему же сами пищеварительные ферменты не расщепляются на мономеры под действием таких протеаз?

Полимеры и мономеры

Молекулы состоят из еще более мелких частиц - атомов. Полимеры ("поли"- "много", "мерос" - "часть") - это молекулы, состоящие из одинаковых или очень похожих друг на друга групп атомов (остатков мономеров: "моно" - "один"), соединенных между собой (см. рис. 14б и 15). Пищеварительные ферменты во вторичной лизосоме "разрезают" полимеры пойманной пищи на отдельные мономеры. Полимеры и их мономеры обычно имеют разные названия. Чтобы было легче запомнить эти названия, мы объединили в табл.1 сведения обо всех типах полимеров клетки.

Чем отличается по строению молекулы мономер от остатка мономера?

Подробнее о полимерах, остатках мономеров и самих мономерах. Краткое введение в химию.

Атомы в химии принято обозначать латинскими буквами (например, атом водорода обозначается латинской буквой H, атом кислорода - буквой O). Молекулы в химии изображают формулами. В некоторых формулах (они называются графическими формулами) связи атомов друг с другом (химические связи) рисуют в виде палочек (см., например, рис. 15 и 16). В аналитических формулах около значка каждого атома в виде индекса указывают количество таких атомов в этой молекуле. На рис. 16 показаны аналитические и графические формулы двух молекул - воды и перекиси водорода.

Обычно на одном конце любого клеточного полимера к нему присоединен атом водорода, а на другом конце - группа из двух соединенных друг с другом атомов - водорода и кислорода. На рис. 15 показано, как пищеварительный фермент "разрезает" полимер. Подобные химические реакции (в ходе которых к каким-либо молекулам присоединяются разделенные на части молекулы воды) называют реакциями гидролиза. Пищеварительные ферменты, производящие реакции гидролиза, называют гидролазами.

Таблица 1. Полимеры и мономеры, входящие в состав живых клеток.

ПолимерыМономеры
Белки Аминокислоты (обычно их в клетке около 20 разных типов).
Углеводы (полисахариды): Моносахариды:
Нуклеиновые кислоты: Нуклеотиды:
рибонуклеиновая кислота (РНК) нуклеотиды РНК (4 типа: А аденин, У урацил, Г гуанин, Ц цитозин)
дезоксирибонуклеиновая кислота (ДНК) нуклеотиды ДНК (4 типа: А, Т тимин, Г, Ц)

Строение мембраны. Липиды.

Твердые предметы могут быть гидрофильными - смачивающимися водой ("фила" - "любовь") или гидрофобными - не смачивающимися водой ("фобос" - "страх"). Определяется это так: на пластинку, изготовленную из интересующего нас вещества, капаем небольшую капельку воды. На гидрофобной поверхности капелька собирается в шарик, на гидрофильной - растекается (рис.17). Тонкая трубочка (капилляр) из гидрофильного вещества втягивает в себя воду. Капилляр из гидрофобного вещества вода как бы старается покинуть. Причина этих явлений в том, что молекулы воды притягиваются, во-первых, друг к другу (это притяжение мешает капельке воды мгновенно разлететься на молекулы), а во-вторых, к молекулам твердого тела. Если первая сила больше второй, то капелька воды собирается в шарик, "отлипая" от твердой поверхности (т.е. данная поверхность гидрофобная). Если первая сила меньше второй, то капелька воды начинает растекаться по твердой поверхности (т.е. данная поверхность - гидрофильная).

Мембрана клетки состоит из многих разных молекул. Большинство из них - молекулы липидов (рис. 18). Молекула липида состоит из гидрофильной "головки" и двух гидрофобных "хвостов". В воде "головки" разных липидных молекул слегка отталкиваются друг от друга, а "хвосты" слипаются друг с другом (вообще гидрофобные предметы в воде склонны слипаться друг с другом, при этом площадь соприкосновения с водой каждого из них уменьшается).

Подробнее о липидах.

На рис. 18 а) изображены молекулы глицерина, спирта инозитола, фосфорной кислоты и двух разных жирных кислот. Если соединить их друг с другом так, как показано на рис. 18б, получится липидная молекула, реально встречающаяся в мембранах некоторых клеток (подобные реакции называют реакциями дегидратации, то есть реакциями отделения воды).

Как Вы думаете, почему гидрофобные предметы в воде слипаются друг с другом?

? Подумайте, в каком положении будут находиться на поверхности воды одиночные липидные молекулы? А как будет выглядеть на поверхности воды пленка из молекул липидов толщиной в две молекулы?

В мембране, кроме липидов, имеется большое количество молекул белков (рис. 19). Одни из них погружены в двойной слой липидов, другие прикреплены к головкам липидов и целиком находятся либо снаружи, либо внутри клетки. Наружная поверхность клеточной мембраны отличается от внутренней: здесь к головкам липидов и к белкам прикреплены короткие цепочки из остатков моносахаридов - олигосахариды. Все вместе они образуют на поверхности клетки "сахарную шубу" - гликокаликс.

Как вы думаете, какие участки поверхности белковых молекул на рис. 19 гидрофильны, а какие - гидрофобны?

Мембранное (пристеночное) пищеварение.

Некоторые белки могут довольно прочно прикрепляться к поверхности клетки, соприкасаясь при этом только с олигосахаридами гликокаликса. Например, такой способностью обладают многие пищеварительные ферменты. Если первичная лизосома сольется с наружной мембраной клетки, то многие из находившихся в ней пищеварительных ферментов, оказавшись "на улице", сразу же прилипнут к поверхности гликокаликса. При этом они смогут "ловить" проплывающие мимо соответствующие полимеры и расщеплять их. Белки-переносчики из лизосомы окажутся в наружной мембране, и начнут переносить внутрь клетки соответствующие мономеры. Получается, что пища будет перевариваться прямо на поверхности клетки. Особенно активно пристеночное пищеварение происходит в кишечнике у разных животных.

Как Вы думаете, почему поверхность клеток стенки тонкой кишки у человека покрыта тонкими выростами и имеет толстый слой гликокаликса?